Copied to
clipboard

G = C23.Dic10order 320 = 26·5

6th non-split extension by C23 of Dic10 acting via Dic10/C10=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.6Dic10, M4(2).30D10, C20.68(C4⋊C4), (C2×C20).28Q8, C20.441(C2×D4), (C2×C20).483D4, (C2×C4).16Dic10, C4.Dic5.10C4, C20.53D413C2, (C22×C10).16Q8, C53(M4(2).C4), C20.127(C22×C4), (C2×C20).415C23, (C22×C4).134D10, (C2×M4(2)).16D5, C22.4(C2×Dic10), C4.21(C10.D4), (C10×M4(2)).27C2, C4.Dic5.41C22, (C22×C20).183C22, (C5×M4(2)).33C22, C22.17(C10.D4), C4.90(C2×C4×D5), C10.75(C2×C4⋊C4), C52C8.5(C2×C4), (C2×C4).49(C4×D5), C4.131(C2×C5⋊D4), (C2×C10).11(C2×Q8), (C2×C10).82(C4⋊C4), (C2×C20).276(C2×C4), (C2×C4).194(C5⋊D4), C2.19(C2×C10.D4), (C2×C4).511(C22×D5), (C2×C4.Dic5).24C2, (C2×C52C8).143C22, SmallGroup(320,751)

Series: Derived Chief Lower central Upper central

C1C20 — C23.Dic10
C1C5C10C20C2×C20C2×C52C8C2×C4.Dic5 — C23.Dic10
C5C10C20 — C23.Dic10
C1C4C22×C4C2×M4(2)

Generators and relations for C23.Dic10
 G = < a,b,c,d,e | a2=b2=c2=1, d20=c, e2=bcd10, ab=ba, eae-1=ac=ca, ad=da, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=bcd19 >

Subgroups: 238 in 102 conjugacy classes, 59 normal (39 characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C23, C10, C10, C2×C8, M4(2), M4(2), C22×C4, C20, C2×C10, C2×C10, C8.C4, C2×M4(2), C2×M4(2), C52C8, C52C8, C40, C2×C20, C22×C10, M4(2).C4, C2×C52C8, C2×C52C8, C4.Dic5, C4.Dic5, C2×C40, C5×M4(2), C5×M4(2), C22×C20, C20.53D4, C2×C4.Dic5, C10×M4(2), C23.Dic10
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C4⋊C4, C22×C4, C2×D4, C2×Q8, D10, C2×C4⋊C4, Dic10, C4×D5, C5⋊D4, C22×D5, M4(2).C4, C10.D4, C2×Dic10, C2×C4×D5, C2×C5⋊D4, C2×C10.D4, C23.Dic10

Smallest permutation representation of C23.Dic10
On 80 points
Generators in S80
(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(2 22)(4 24)(6 26)(8 28)(10 30)(12 32)(14 34)(16 36)(18 38)(20 40)(42 62)(44 64)(46 66)(48 68)(50 70)(52 72)(54 74)(56 76)(58 78)(60 80)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 71 31 61 21 51 11 41)(2 50 12 60 22 70 32 80)(3 49 33 79 23 69 13 59)(4 68 14 78 24 48 34 58)(5 67 35 57 25 47 15 77)(6 46 16 56 26 66 36 76)(7 45 37 75 27 65 17 55)(8 64 18 74 28 44 38 54)(9 63 39 53 29 43 19 73)(10 42 20 52 30 62 40 72)

G:=sub<Sym(80)| (41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40)(42,62)(44,64)(46,66)(48,68)(50,70)(52,72)(54,74)(56,76)(58,78)(60,80), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,71,31,61,21,51,11,41)(2,50,12,60,22,70,32,80)(3,49,33,79,23,69,13,59)(4,68,14,78,24,48,34,58)(5,67,35,57,25,47,15,77)(6,46,16,56,26,66,36,76)(7,45,37,75,27,65,17,55)(8,64,18,74,28,44,38,54)(9,63,39,53,29,43,19,73)(10,42,20,52,30,62,40,72)>;

G:=Group( (41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40)(42,62)(44,64)(46,66)(48,68)(50,70)(52,72)(54,74)(56,76)(58,78)(60,80), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,71,31,61,21,51,11,41)(2,50,12,60,22,70,32,80)(3,49,33,79,23,69,13,59)(4,68,14,78,24,48,34,58)(5,67,35,57,25,47,15,77)(6,46,16,56,26,66,36,76)(7,45,37,75,27,65,17,55)(8,64,18,74,28,44,38,54)(9,63,39,53,29,43,19,73)(10,42,20,52,30,62,40,72) );

G=PermutationGroup([[(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(2,22),(4,24),(6,26),(8,28),(10,30),(12,32),(14,34),(16,36),(18,38),(20,40),(42,62),(44,64),(46,66),(48,68),(50,70),(52,72),(54,74),(56,76),(58,78),(60,80)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,71,31,61,21,51,11,41),(2,50,12,60,22,70,32,80),(3,49,33,79,23,69,13,59),(4,68,14,78,24,48,34,58),(5,67,35,57,25,47,15,77),(6,46,16,56,26,66,36,76),(7,45,37,75,27,65,17,55),(8,64,18,74,28,44,38,54),(9,63,39,53,29,43,19,73),(10,42,20,52,30,62,40,72)]])

62 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B8A8B8C8D8E···8L10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222444445588888···810···101010101020···202020202040···40
size112221122222444420···202···244442···244444···4

62 irreducible representations

dim11111222222222244
type+++++--+++--
imageC1C2C2C2C4D4Q8Q8D5D10D10Dic10C4×D5C5⋊D4Dic10M4(2).C4C23.Dic10
kernelC23.Dic10C20.53D4C2×C4.Dic5C10×M4(2)C4.Dic5C2×C20C2×C20C22×C10C2×M4(2)M4(2)C22×C4C2×C4C2×C4C2×C4C23C5C1
# reps14218211242488428

Matrix representation of C23.Dic10 in GL4(𝔽41) generated by

1000
0100
00400
00040
,
1000
04000
0010
00040
,
40000
04000
00400
00040
,
01000
8000
00036
0040
,
0010
0001
32000
0900
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[0,8,0,0,10,0,0,0,0,0,0,4,0,0,36,0],[0,0,32,0,0,0,0,9,1,0,0,0,0,1,0,0] >;

C23.Dic10 in GAP, Magma, Sage, TeX

C_2^3.{\rm Dic}_{10}
% in TeX

G:=Group("C2^3.Dic10");
// GroupNames label

G:=SmallGroup(320,751);
// by ID

G=gap.SmallGroup(320,751);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,477,422,58,136,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=c,e^2=b*c*d^10,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^19>;
// generators/relations

׿
×
𝔽